AUFKLÄRUNG DER 'H- UND 'C-NMR-SPEKTREN SOWIE DER KRISTALLSTRUKTUR UNGESÄTTIGTER GLYCOSYLPHOSPHONATE UND KONFORMATIONSBERECHNUNGEN AN MODELLEN'

G. ADIWIDIAJA, B. MEYER, H. PAULSEN und J. THIEM .

(Received in Germany 15 March 1978)

Zasammenfannung—Die Anwendung eines modifizierten LAOCN-3 Programms führt zur vollständigen Aufklärung der ¹H-NMR-Spektren der 2,3-ungesättigten Glycosylphosphonate 1-8. Die erstmalig exakt bestimmten ³J(H, H)-und neuartigen ³J(H, P)-Kopplungsparameter werden diskutiert und lassen Rückschlüsse auf die Konformation zu. Von allen Verschiebungen werden vollständig interpretierbare ¹³C-NMR-Spektren erhalten. Die Diskussion der chemischen Verschiebungen sowie der ¹J(C-H)- und der ³J(C-P)-Kopplungskonstanten stätzt die konformativen Zuordnungen. An allen Derivaten können die Beziehungen ¹J(C-1, H_a) > ¹J(C-1, H_a) and ¹J(C-1, P_a) für die Anomerenzuordnung Verwendung finden. Die Kristallstrukturanalyse von 1 steht in Übereinstimmung mit der Anomerenzuordnung und ergibt eine nicht erwartete Konformation. MINDO-3 Berechnungen an Modellen dienen der Erfäuterung derartiger konformativer Effekte.

Abstract—By application of a modified LAOCN-3 program a complete elucidation of the ¹H NMR spectra of 2,3-ansaturated glycosyl phosphonates 1-5 could be achieved. The exactly determined $^{1}J(H, H)$ and novel $^{1}J(C, P)$ coupling constants are discussed, and permit a conclusive deduction of the conformations. The ^{1}C NMR spectra of 1 to 6 can be fully interpreted. By a close inspection of chemical shifts as well as $^{1}J(C-H)$ and $^{1}J(C-P)$ coupling constants the conformational assignment is supported. For all the derivatives the correlations $^{1}J(C-1, H_0) > ^{1}J(C-1, H_0) > ^{1}J(C-1, P_0)$ can be used for the assignment of anomers. The crystal structure of 1 is in accordance with this assignment of anomers and displays an unexpected conformation. Calculations by MINDO-3 in resembling model compounds serve to elucidate such conformative effects.

Ein synthetischer Zugang zu der Klasse der Glycosylphosphonate besteht bislang nur in der Addition von Dialkylphosphit an Glycale unter Alfylverschiebung, wobei 2,3-ungesättigte Glycosylphosphonate erhalten werden.3 Versuche zur Glycolisierung dieser Verbindungen oder Übertragung der an Modellsubstanzen erfolgreich entwickelten Synthesen43 auf Kohlenhydratderivate führten bislang nicht zu Erfolgen. Bei den seinerzeit getroffenen Zuordnungen aufgrund der nach erster Ordnung analysierten ¹H-NMR-Spektren fanden wir kürzlich in einigen Fällen kritische Abweichungen. Wir haben daher mit modernen analytischen Methoden eine umfassende NMR-spektroskopische Untersuchung unternommen. Von Interesse waren im Zusammenhang damit vor allem eindeutige Aussagen über die Konfiguration am anomeren Zentrum sowie die Konformation dieser Verbindungen.

H-NMR-Untersuchungen

Für die Verbindungen 1-6 konnte die erste Anomerenzuordnung nur aufgrund der Hudson'schen Isorotationsregel getroffen werden. Abweichungen von dieser Regel wurden beobachtet, wenn in der Nähe des anomeren Zentrums ein Chromophor gebunden vortiegt oder wenn ungesättigte Derivate vermessen werden. Die

aufgenommenen ORD-Kurven für 1-6° wiesen im Bereich von λ 600-250 nm keinen Cotton-Effekt auf. An der Anomerenzuordnung³ entstanden nach Aufnahme der ¹³C-NMR-Spektren und der Analyse der Hydrierungsprodukte² Zweifel.

Es zeigt sich, dass auch bei 270 MHz die Spektren der Verbindungen 1-6 noch zu komplex für eine Analyse nach erster Ordnung sind. Wir griffen daher zurück auf die Methode der Spektrensimulierung mit Hilfe des iterativen Programms LAOCN-3. Dieses ist kürzlich im Verlauf unserer Untersuchungen erstmalig zur Aufklärung komplizierter Spektren im Bereich der Kohlenhydratchemie eingesetzt worden. Während dort jedoch das Originalprogramm ausgelegt für sieben Atome mit dem Kernspin 1/2 Verwendung finden konnte, war es in unserem Fall nötig, eine 8-Spinversion für die Analyse der Verbindungen 1-4 zu entwickeln.

In der Tabelle 1 sind zusätzlich zu den RMS-Werten die R- und R'-Werte aufgeführt, die nach Ewing¹² die Güte der Iteration besser beschreiben. Ferner ist von ihm nachgewiesen worden, dass die Beziehung: $\Delta I_{real} = 2.5 \times \Delta I_{probl}$ gilt und den Fehler in den Kopplungskonstanten besser wiedergibt.

Der minimale RMS-Wert von experimentellen Spektren, die auf Puls-PT-Geräten vermessen werden, ist bestimmt durch den Punktabstand ΔP in (Hz/Punkt). Mit

$$RMS_{min} = \sqrt{\lim_{N \to \infty} \frac{\sum_{i=1}^{N} (\mu_{i,exp} - \mu_{i,bor})^{2}}{N}} = \frac{1}{6} \times \Delta P \times \sqrt{3}$$

folgt bei den hier verwendeten Geräteparametern von

⁴Mineralogisch-Petrographisches Institut der Universität Hamburg, Grindelallee 48, 2000 Hamburg 13, Deutschland.

^aInstitut für Organische Chemie und Biochemie der Universität Hamburg, Martin-Luther-King-Platz 6, 2000 Hamburg 13, Deutschland.

Tabelle 1. Chemische Verschiebungen" und Güte der Iteration.

	1	<u>1</u> °)	2	3	1	2
1-Н	4,659	4.483	4.709	4.739	4.703	4.576
2-H	6.022	5.765	6.052	6.161	6.244	6.215
3-H	5,984	5, 824	5. 911	6.220	6,191	6,126
4-H	5,238	5.356	5.334	5,141	5,120	5.095
5a-H	4.370	4.614	3,687	4.648	3.918	4,140
5e-H	•	-	•	•	•	3, 850
6a-H	4, 226	4. 225	4. 205	4.206	4.232	•
6b-H	4, 226	4.303	4,280	4.213	4, 255	•
OCOCH ₄ -1	2.073	3. 386	2.074	2,069	2,080	2,087
OCOCH ₃ -2	2,073	3.588	2.061	2,043	2.067	•
OCH ₃ -1	3.889	1.622	3, 839	3.904	3.872	3.868
OCH ₃ -2	3, 815	1.667	3. 821	3. 816	3.842	3. 859
RMS	0,054	0.066	0.065	0.066	0.064	0.071
R	15	68	57	53	68	47
R'	137	222	199	211	199	143
N	370	485	479	447	470	283
probl	0.009	0.010	0.011	0.017	0.013	0.014
real	0.023	0.026	0.028	0.043	0.033	0.035

"8-Werte in ppm zu tiefem Feld ab TMS, 270 MHz, c = 0.05-0.1 g/ml in CDCl₃.
"RMS = Root Mean Square (mittlerer quadratischer Fehler); R = Anzahl der $\Delta \nu < 0.1$ Hz; R' = Anzahl der $\Delta \nu < 0.05$ Hz; N = Anzahl der Referenzlinien; $\Delta I_{\text{probl}} = \text{mittlerer}$ wahrscheinlicher Fehler der Kopplungskonstanten (Hz); $\Delta I_{\text{resl}} = \text{wahrer}$ mittlerer Fehler der J (Hz).

"In C_0D_0 (c = 0.1 g/ml).

32 K Gesamtdatenspeicher und 3012.05 Hz Spektrenbreite:

$RMS_{min} = 0.053 Hz.$

Der Tabelle 1 entnimmt man Werte für RMS, die aur wenig über diesem bestenfalls erreichbaren Wert liegen. Ferner erkennt man, dass die Fehler bei den Kopplungskonstanten ΔJ_{rent} um cs. 0.03 Hz liegen, womit eine sehr gename Diskussion der Kopplungskonstanten möglich ist.

Das Ergebnis der Iterationen ist in Abb. 1 für die Ringprotonen 1-H bis 5-H an der α-D-erythro-Verbindung 1 im Vergleich zu dem experimentellen Spektrum exemplarisch graphisch dargestellt. Auch bei den anderen untersuchten Verbindungen werden derart eindrucksvolle Übereinstimmungen zwischen experimentellen und nach der Berechnung simulierten Spektren erhalten. Die Daten der berechneten Spektren (chemische Verschiebungen und Kopplungskonstanten) finden sich in den Tabbellen 1 und 2. Nur im Fall der β -D-glycero-Verbindung 6 gelang es nicht, ein iterierbares Spektrum zu erzeugen, was auf den äusserst geringen Abstand von 2-und 3-H und die sehr breiten Banden im experimentellen Spektrum zurückzuführen ist.

Die hier getroffene Anomerenzuordnung stimmt mit den Befunden an den hydrierten Folgeprodukten² überein und bestätigt die Revision der früher angenommenen Zuordnung bei den Verbindungen 1-4. Damit wird deutlich, dass die Anwendung der Hudson'schen Isorotationsregeln⁶ in dieser Substanzklasse nicht zulässig ist.

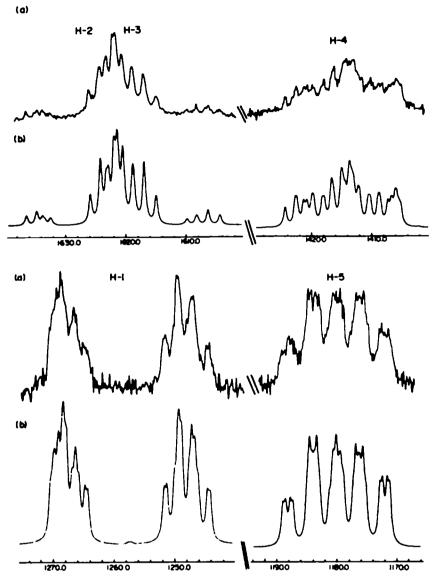


Abb. 1. Ausschnitt aus dem 270 MHz 'H-NMR-Spektrum von 1 in CDCl₃ (c = 0.025 g/ml). (a) Experimentelles Spektrum, (b) berechnetes Spektrum der Ringprotonen 1-H bis 5-H.

Die Geminalkopplung ²J(H, P) in Phosphinen¹³ und früher auch in Phosphonaten^{2,14} wurden für positiv gehalten. Kürzlich sind an Norbornanylphosphonaten negative Werte beschrieben worden,¹⁵ und theoretische Rechnungen nach dem Pople-Santry-Näherungsverfahren an Methanphosphonsäuredichlorid¹⁶ fordern für eine frei drehbare Phosphonatgruppe ca. – 20 Hz. Dies steht in völliger Übereinstimmung mit allen hier bestimmten ²J(H, P)-Werten. Ein Probespektrum mit ²J(H, P) von ca. + 20 Hz führte zu einer Vertauschung der beiden Signalgruppen in 1-H, mithin liefert die Rechnung auch hier eindeutig negative Kopplungskonstanten ²J(1-H, P).

Bei den erythro-Verbindungen 1 und 2 sowie der glycero-Verbindung 5 lassen sich aus den Vicinalkopplungskonstanten ³J(4-H, 5-H) Informationen über die Konformerenverteilung ableiten. Mit einem Torsionswinkel zwischen quasiaxialem 4-H und axialem 5-H von 170° im Idealfall einer ⁶H-Konformation sollte ein ³J-Wert von ea. 9.5 Hz erwartet werden. Gefunden wird in 2 8.97 Hz, wemit die ⁶H-Konformation nahezu ideal realisiert sein sollte. Pftr das Anomere 1 ergibt sich der Torsionswinkel

aus der Röntgenstrukturanalyse zu 164.2°, so dass man nur einen Anteil von ca. 85% °H_x-Konformeren findet (mit ³J(quasiaxial, axial) = 8.6 Hz und ³J(quasiaquatorial, ăquatorial) = 2.5 Hz als Extremwerten). Dies gibt einen Hinweis darauf, dass die Dimethylphosphonogruppe bevorzugt die quasiăquatoriale Position einnimmt, mithin die Summe aus ihrem A-Wert und anomerem Effekt positiv ausfallen sollte.² Unter diesem Aspekt und aufgrund des negativen A-Wertes der 4-Acetoxygruppe lässt sich verstehen, weshalb die α -D-glycero-Verbindung 5 mit ³J(4-H, 5a-H) = 2.39 Hz und ³J(4-H, 5e-H) = 2.70 Hz ganz überwiegend die ³H_x-Konformation einnimmt. Pür die thero-Verbindungen 3 und 4 können diese Betrachtungen nicht angestellt werden, da in beiden Konformeren 4-H und 5-H jeweils einen Torsionswinkel von ca. 60° aufweisen.

För H,H-Vicinalkopplungen über ein sp²-hybridisiertes C-Atom gilt mach Garbisch²⁷ die Beziehung:

3
J(HC-CH) = 6.6 cos² ϕ + 2.6 sin² ϕ (0° < ϕ < 90°).

Tabelle 2. Kopplungskonstanten J (Hz) der ungesättigten Glycosylphosphosphospte.

	1	<u>1</u> a)	2	3	4	5
1-H, 2-H	3.12	2.99	1.98	3. 40	1.80	2,15
1-H, 3-H	-2,45	-2. 34	-2, 95	-2.61	-2.52	-2.68
1-H,4-H	2.80	2.78	3.19	0.54	2.12	2. 32
1-H,5m-H	0.48	0.28	0, 22	0.47	0.74	0.19
1-H,5e-H	-	-	•	•	-	0.32
1-H,6a-H	0.00	0.00	0.07	0.01	0.00	•
1-н,66-н	0.00	0.02	0.03	0.03	0.01	•
1-H, P	-19.67	-20.05	-18.19	-20.45	-18.96	-19, 28
2-H, 3-H	10.55	10, 56	10.52	10,31	10.23	10.38
2-н, 4-н	-2.02	-1.96	-2,02	-0,40	-0,54	-0.84
2-H, 5a-H	0.01	0.01	0.01	0.01	0.00	0.04
2-H, 5e-H	-	•	-	•	-	0.07
2-H, 6a-H	0.00	0.00	0.04	0.01	0.00	-
2-н, 6ъ-н	0.00	0.00	0.03	0.01	0.00	-
2-H, P	2.40	2.30	4, 37	2.26	4.79	4.62
3-н, 4-н	2. 32	2, 26	1.80	5.78	5.67	4. 93
3-н, 5а-н	0.08	0,24	0.00	0.11	0.01	1.07
3-H, 5e-H	•	•	•	•	•	0.02
3-H, 6a-H	0.00	0.00	0.14	0.03	0.01	-
3-н, 66-н	0.00	0.00	0.02	0.01	0.02	•
3-H, P	-4.56	-4.69	-3, 25	·· -3,56	-3,78	-3.90
4-H, 5a-H	7.74	7, 87	8, 97	2,41	2,14	2. 39
4-H, 5e-H	-	-	•	•	•	2.70
4-H,6a-H	0.02	0.00	0.08	0.03	0.00	-
4-H,6b-H	0.02	0.02	0.00	0.02	0.03	•
4-H, P	6.16	6.44	5.61	4.96	1.09	0.31
5a-H, 5e-H	-	-	-	•	•	-12.30
5a-H,6a-H	4.19	5, 86	5.69	9, 88 b)	5, 22	•
5a-H,6b-H	4.19	2,53	2, 45	2. 34 ^{b)}	7. 32	•
5a-H, P	1.22	1.33	1.36	2.12	0,78	1,10
5e-H, P	-	•	•	•	•	?
6a-H,6b-H	•	-12, 25	-12.20	-11.76	-11.59	-
6a-H, P	0.00	0.01	0.17	0.00	0.00	•
6b-H, P	0.00	0.10	0.03	0.01	0.03	•
P, OCH ₃	10.70	10.60	10.50	10.60	10.68	10.60

a) in C₆D₆. b) nicht eindeutig; die andere Löeung des ABX-Systems mit J(5-H, 6a-H)=8. 36 und J(5-H, 6b-H)=3. 83 Hz gibt bei der Iteration ebenfalls eine gute Übereinetimmung für 5-H.

Ein derartiger Kopplungstyp tritt in den Verbindungen 1 bis 6 sowohl für $^3J(1-H,2-H)$ als auch für $^3J(3-H,4-H)$ auf. Den Molekülmodellen entnimmt man Torsionswinkel ϕ von 80° für ein quasiaxiales und 40° für ein quasiaquatoriales 4-H, was durch die Röntgenstrukturanalyse von 1 durchaus bestätigt wird ($\phi(3,4)=78.6^\circ$). Aus den Kopplungskonstanten berechnet ergibt sich bei 5 genau ein Winkel von $\phi=40^\circ$, wonach ebenfalls die 3H_0 -Konformation realisiert sein dürfte. Ebenso weisen diese Kopplungen die β -D-erythro-Verbindung 2 als in reiner 0H_3 -Konformation vorliegend aus. Eine Bestimmung für 1 ergibt so 85% 0H_3 -Konformerenanteil, was hervorragend mit dem vorher ermittelten Wert übereinstimmt. Die Unterschiede dieser Kopplungskonstanten

bei den threo-Verbindungen 3 und 4 sind nur gering und lassen annähernd jeweils eine gleiche Konformation erwarten.

Die Bestimmung von Torsionswinkeln ϕ aus den ³J(1-H, 2-H)-Kopplungskonstanten bereitet Schwierigkeiten, da die gefundenen Werte von den erwarteten abweichen. Wie die Kristallstrukturdaten zeigen, dürfte die Ursache kierfür in einer erheblichen Verdriftung des Moleküls 1 liegen. Danach erbigt sich ein Wert für ϕ (1-H, 2-H) = 75.6°, während mit der Garbisch-Beziehung aus der Kopplungskonstante ein Winkel von ca. 69° errechnet wird. Damit folgt, dass die Anwendung der Garbisch-Beziehung auf die α -Anomeren 1 und 3 eine durchaus annehmbare Interpretation zulässt. Dagegen

werden bei den isomeren β-Verbindungen 2 und 4 Werte für J(1-H, 2-H) gefunden, die ausserhalb des Bereichs der Garbisch-Beziehung liegen, weshalb nur qualitativ ein grüsserer Torsionswinkel φ(1-H, 2-H) angenommen werden kann. Vergleichbare ³J(HCCP)-Vicinalkopplungen sind in Phosphonaten bisher nicht betrachtet worden. Überraschenderweise liegen die beobachteten Werte in der Grüssenordnung der entsprechenden H,H-Kopplungskonstanten. Eine Torsionswinkelabhängigkeit ist jedoch aufgrund der unsicheren Konformationen von 2-5 nicht anzugeben.

Auch für die Allylkopplungskonstanten ist von Garbisch¹⁷ eine semiempirische Beziehung gegeben worden:

4
J(HC-C=CH) = 1.3 $\cos^{2} \phi - 2.6 \sin^{2} \phi$ (0° $\leq \phi \leq$ 90°)

Neuere theoretische Betrachtungen¹⁸ zur besseren Anpassung der experimentellen Daten geben für die Torsionswinkel $\phi = 40^\circ$ und 80° nur geringfügig andere Werte als diese Garbisch-Gleichung. Pür die ⁴J(2-H, R-H)-Kopplungskonstanten stimmen die Werte sehr gut mit den Forderungen dieser Garbisch-Funktion überein und die Abweichungen sind kleiner als 0.5 Hz. Dagegen varieren die Werte der ⁴J(1-H, 3-H)-Kopplungskonstanten nur geringfügig, was wiederum im Wesentlichen auf die abgeflachte ⁶H₃-Konformation zurückgeführt werden kann.

In den vorliegenden Verbindungen finden sich erstmalig Allylkopplungskonstanten vom Typ $^4J(3-H,P)$. Ihre Werte sind in allen Fällen (s. Tabelle 2) deutlich negativer als bei den H,H-Allylkopplungskonstanten beobachtet wurde. Nach den VB-Berechnungen von Garbisch¹⁷ gibt der erste Term den σ -Anteil, der zweite den π -Anteil der Kopplungskonstante wieder. Wenngleich dies exakt nicht zulassig sein soll, 18 dient es dem Verständnis und führt dazu, einen erheblich grösseren π -Anteil für den $^4J(H,P)$ -Kopplungstyp anzunehmen. Aus dem bei 1 bekannten Torsionswinkel ϕ (3-H, P) = 55.1° sollte bei konstantem σ -Term ein π -Term von ca. $-8.8 \sin^2 \phi$ resultieren.

Als weiterer ungewöhnlicher Kopplungstyp findet sich in den vorliegenden Verbindungen die Homoallylkopplung. Ihr Wert zur Strukturermittlung ist nur bedingt, da die Grösse durch zwei voneinander unabhängige Torsionswinkel φ und φ' bestimmt ist. Eine Diskussion der Daten¹⁹ muss bei dem gegenwärtigen Material unvollständig bleiben. Man entnimmt der Tabelle 2 jedoch, dass die ⁵J(H, P)-Kopplungskonstanten jeweils erheblich grösser ausfallen als die entsprechenden ⁵J(H, H)-Werte. Da auch bei diesem Kopplungstyp im Wesentlichen ein π-Mechanismus diskutiert wird, ²⁰ bestätigt sich die Beobachtung, dass generell bei H, P-Kopplungen dem π-Term eine erhebliche Bedeutung zukommt.

Eine Iteration des Spektrums von 1 in C_aD_a mit dem LCN-38 Programm (Tabelle 1) zeigt keine nennenswerten Änderungen der Kopplungskonstanten. Danach kann das Konformerengleichgewicht von 1 im Bereich schwach solvatisierender Lösungsmittel als praktisch gleich angesehen werden.

13C-NMR-Studien

In den ungesättigten Glycosylphosphonaten stellen die verschiedenartigen Kopplungskonstanten "J(31P, 13C) des Phosphors mit den C-Atomen des Ringes eine Entscheidungshilfe für die Zuordnung dar. C-6 als Triplett im gekoppelten Spektrum und C-1 mit der grossen direkten Kopplungskonstante zu Phosphor lassen sich unmittelbar zuordnen. Auch die C-Atome C-4 und C-5 konnten durch ihre Kopplungen mit Phosphor unterschieden werden, und zusätzlich wurde stellvertretend für die anderen Verbindungen an 2 eine selektive Entkopplung durch Doppelresonanz durchgeführt, die die getroffenden Zuordnungen vollauf bestätigte.

Problematischer gestaltet sich die Unterscheidung von C-2 und C-3. Eine selektive Doppelresonanz kann nicht vorgenommen werden, da 2-H und 3-H im Protonenresonanzspektrum bei 270 MHz nur ca. 10-25 Hz voneinander getrennt auftreten. Da die Geminalkopplungskonstante ²J(C-2, P) mit ca. 11 Hz nicht wesentlich von der Art des Anomeren abhängt, wurden die Signale, die diese Aufspaltung zeigten C-2 zugeordnet. Dagegen erweist sich die Vicinalkopplungskonstante ³J (C-3, P) für die jeweiligen Anomeren als signifikant unterschiedlich, so dass auch C-3 zugeordnet werden konnte.

Die ¹³C-chemischen Verschiebungen (s. Tabelle 3) der funktionellen Gruppen, der Acetoxymethyleruppe und der ungesättigten C-Atome entsprechen der Erwartung. Der für viele Verbindungen nachgewiesene Effekt einer Hochfeldverschiebung für axial gegenüber äquatorial substituierten C-Atomen²¹⁻²³ lässt sich in den Verbindungen 1-6 auch für quasiaxiale gegenüber quasiaquatorialen Substituenten beobachten. An C-1 findet man einen Unterschied von ca. 1-2 ppm zwischen α - und B-Anomeren in 1-4. Ahnlich ist der Effekt an C-4 für eine quasiaxiale gegenüber einer quasiaquatorialen Substitution ca. 1.5 ppm. Der Vergleich der chemischen Verschiebungen von C-1 mit C-5 Hasst den Schluss zu. a-Substituenteneffekt der phosphonogruppe dem eines Kohlenstoffsubstituenten vergleichbar ist und überwiegend auf sterische und nicht auf elektronische Einflüsse zurückgeht. Der brutto-y-Effekt der Dimethylphosphonogruppe auf C-5 kann als Differenz eines Anteils für die gauche-Stellung dieser Gruppe zu C-5 bei den a-Anomeren und eines Anteils für die antiperiplanare Stellung beider zueinander bei den B-Anomeren aufgefasst werden. Die Hochfeldverschiebung von 8 1.6 ppm in Tetrahydropyranyl-2-dimethylphosphonat⁴ stellt allein den antiperiplanaren Anteil dar, da diese Verbindung in der Konformation mit aquatorialer Dimethylphosphonogruppe vorliegt, wie die Kopplungskonstante ¹J(C-1, P) = 172.0 Hz zeigt (s.unten). Damit ergibt sich aus den Verbindungen 1 bis 4 ein gauche-y-Effekt von ca. 4.5 ppm Verschiebung zu höherem Feld.

Die J(C-H)-Kopplungskonstanten (s. Tabelle 3) wurden Spektren entnommen, die nach der "gated-decoupting"-Methode²⁴ aufgenommen wurden. Ein Anstieg der Grösse der J(C-H)-Kopplungskonstante mit zunehmender Elektronegativität der Substituenten am betrachteten C-Atom ist bekannt.²⁵ Auffällig ist, dass die Kopplungskonstanten J(C-5, 5-H) und J(C-1, 1-H) im Bereich von 142–148 Hz liegen. Dies macht deutlich, dass die Dimethylphosphonogruppe an C-1 und die Acetoxymethylgruppe an C-5 von vergleichbarer Elektronegativität sind, mithin die C-P-Bindung in den Glycosylphosphonaten keine nennenswerte Polarität aufweist.

Besondere Bedeutung kommt der ¹J(C-1, 1-H)-Kopplungskonstanten zu, deren Grösse eine signifikante Abhängigkeit von der Stellung des anomeren H-Atoms zeigt. ²⁶ Nach der Analyse der Daten ergibt sich, dass die abgeleitete Beziehung ¹J(C-1, 1-H_{i-ipmetorial}) > ¹J(C-1,

Tabelle 3. 13C-NMR chemische Verschiebungen" (13C-H)- und "3(C. P)-Kopphangskonstanten").

	~=	~=	ma.	4 1	wh #	•
1-5	70.7(148.1/159.5)	70.7(148.1/159.5) 72.9(142.0/173.5) 71.1(148.0/157.5) 72.6(142.3/171.3) 71.0(143.5/169.0) 70.7(147.0/162.9)	71.1(148.0/157.5)	72.6(142.3/171.3)	71.0(143.5/169.0)	70.7(147.0/162.9)
C-2	127.4(168.0/11.8)	127.4(168.0/11.8) 127.5(168.0/11.6) 124.7(169.0/11.8) 124.2(171.0/11.0) 125.0(168.0/11.8) 125.8(169.0/11.8)	124.7(169.0/11.8)	124. 2(171. 0/ 11. 0)	125.0(168.0/11.8)	125.8(169.0/11.8)
C-3	125.0(168.0/ 0.0)	125.0(168.0/ 0.0) 125.8(167.0/ 7.5) 127.7(169.0/ 1.5) 128.9(166.5/ 7.9) 127.9(166.5/ 5.9) 127.2(166.5/ 3.9)	127.7(169.0/ 1.5)	128.9(166.5/ 7.9)	127.9(166.5/ 5.9)	127.2(166.5/ 3.9)
4- 0	64.5(152.3/ 0.0)	64.5(152.3/ 0.0) 64.7(151.0/ 0.0) 63.4(151.0/ 4.0) 63.4(150.0/ 3.9) 63.9(143.0/ 3.9)	63.4(151.0/ 4.0)	63.4(150.0/ 3.9)	63.9(143.0/ 3.9)	64. 2(149.0/ 3.0)
c.s	71.9(149.5/ 0.0)	71.4(149.5/ 0.0) 74.4(146.0/11.2) 71.1(145.0/ 1.0) 74.4(142.5/13.0) 67.4/143.8/11.8) 66.0(148.8/ 4.0)	71.1(145.0/ 1.0)	74.4(142.5/13.0)	67. 3/143.8/ 11.8)	66.0(111.8/ 4.0)
9-0	63.1(148.8/ 0.0)	63.3/148.8/ 0.0)	63. 4148.8(0.0) 63.1(148.8, 0.0) 62. 8(148.8, 0.0)	62. 8(148.8, 0.0)	•	
POCH,-1	54. 3(147.7/ 6.2)	53.9(149.4/ 6.7)	54.2(140.0/ 6.5)	54.2(148.0/ 6.5) 54.1(150.0/ 5.9) 54.0(148.5/ 5.9) 53.9(148.0/ 7.0)	54.0(146.5/ 5.9)	53.9(148.0/ 7.0)
POCH,-2	53.1(149.4/ 7.0)	53.5(149.4/ 6.7)	52.8(148.5/ 7.0)	53.8(150.0/ 5.9)	53.5(148.5/ 5.9)	53.1(148.0/ 7.0)
OCOCH 1-1	170.7(- / -)	OCOCH3-1 170.7(- / -) 170.6(- / -) 170.5(- / -) 170.0(- / -) 170.5(- / -)	170.5(- / -)	170.0(- / -)	170.% - / -)	170.4 - / -)
2-1нообо	OCOCH,-2 170. X - / -)	(- / -)0.011 (- / -)K.011 (- / -)0.011	170.3(- / -)	170.0(- / -)	•	•
OCOCH,-1	21.0(129.6/ -)	OCOCH,-1 21.0(129.6/ -) 20.6(129.8/ -)	20.8(130.0/ -)	20.8(130.0/ -) 20.7(130.5/ -)	20.4(129.5/) 20.4(129.5/ -)	20.9(129.5/ -)
OCOCH, .2	OCOCH, 2 20.8(129.6/ -)		20.4(129.6/ -) 20.7(130.0/ -)	20.7(130.5/ -)	•	•

a) 6-Werts in ppm su niedrigem Feld gegen TMS, ce 0.1 g/ml in CDCl3, 67.89 MHz, 32 K Gesamtdatenepelcher.
b) in Hz, Genauigheit ± 0.8 Hz,

1-Hazin) mit Gewinn auch zur Konfigurations- und Konformationsanalyse der ungesättigten Glycosylphosphonate verwendet werden kann. 9,27 Da in diesem Fall quasiaxiale gegenüber quasifiquatorialen Positionen vorliegen und diese ca. 10-15° Abweichung von den idealen axialen und aquatorialen Stellungen aufweisen, verringert sich der Unterschied in den Kopplungskonstanten auf ca. 6 Hz. Für die a-D-glycero-Verbindung 5 wird mit ¹J(C-1, 1-H) = 143.5 Hz ein Wert beobachtet, der nahe an dem Wert für eine Kopplungskonstante bei rein aquatorialer Stellung der Dimethylphosphonogruppe liegt. Dieser Befund ist voll in Einklang mit der Analyse der Protonenkopplungen und bestätigt, dass 5 weitgebend die ⁵He-Konformation einnimmt. Die Kopplungskonstante bei 6 weist auf eine quasiaxiale Stellung der Phosphonatgruppe, womit überraschenderweise auch 6 überweigend in der He-Konformation vorliegen dürfte.

Pür ¹J(C, F)-Kopplungskonstanten an anomeren Glycosylluoriden konnte ebenfalls eine ähnliche Abhängigkeit gefunden werden. ²⁸ Ferner sind an verschiedenen am Phosphoratom C-substituierten 1,3,2,-Dioxaphosphorinanen Änderungen in der ¹J(C, P)-Kopplungskonstanten von ca. 10 Hz beim Übergang von äquatorialen zu axialen C-Substituenten beobachtet worden. ^{20,30}

Wir haben mit den ungesättigten Glycosylphosphonaten erstmalig die Möglichkeit, die Gültigkeit und Anwendbarkeit eines derartigen Effektes an Modellen zu überprüfen, in denen der Heterosubstituent quasiaxiale bzw. quasifiquatoriale Positionen bezüglich des Kohlenhydratgerüstes einnimmt. Aus den durch Breitbandentkopplung bestimmten J(C, P)-Kopplungskonstanten (s.Tabelle 3) läss sich ableiten, dass die Beziehung ¹J(C-1,P_{mentanin}) vollauf gilt. ^{9,27} Dabei fallen die Unterschiede in den Kopplungskonstanten mit ca. 14 Hz noch grösser aus als in allen bisher beobachteten Fällen. Erneut bestätigen die Werte für die α- und β-D-glycero-Verbindungen 5 und 6 ein Überwiegen der ⁵H_θ-Konformationen.

Von unerwarteter Gröss sind die Geminalkopplungskonstanten ²J(C-2, P) mit ca. 11.5 Hz. Während bisher^{4,31} in anderen Fällen Werte zwischen 0 und 4 Hz auftraten, kann hierfür die sp²-Hybridisierung des C-2 und die Beteiligung eines J(w)-Anteils am Kopplungsmechanismus verantwortlich sein. Vicinalkopplungen findet man zwischen C-5 sowie C-3 und Phosphor. Der Kopplungsweg über den Ringsauerstoff bei ³J(C-5, P) zeigt wie erwartet eine Abhängigkeit vom Torsionswinkel. In der ⁶H₃-Konformationen der α-Verbindungen 1 (nach Röntgenstrukturanalyse: 84.6°) und 3 treten Torsionswinkel von ca. 80° auf und die Kopplungskonstanten liegen auch in Anlehnung an die

für 3 J(CCCP) abgeleitete Beziehung 12 bei etwa 0 Hz. Bei den β -Verbindungen 2 und 4 in 6 H₃-Konformationen sowie der α -Verbindung 5 in der 5 H₆-Konformation ergeben sich Torsionswinkel von ca. 160° und demgemäss Kopphungskonstanten von ca. 13 Hz. Dieser Wert fällt geringer aus als man erwartet, 12 da offenbar hier der Einfluss des Sauerstoffs mit berücksichtigt werden muss. Der Wert von 4.0 Hz in der β -D-glycero-Verbindung 6 deutet auch in diesem Fall auf das Vorliegen eines 6 H₅ \Longrightarrow 5 H₆-Konformerengemisches hin.

Pür den Vicinalkopplungstyp ³J(C=C-C-P) gibt es bislang keine theoretischen Betrachtungen. Näherungsweise kann man die Gesamtkopplung als Summe eines σ- und eines π-Anteils beschreiben, wobei der σ-Anteil erheblich grösser ausfällt als der π-Anteil. Damit ist ebenfalls eine Karplus-artige Beziehung zwischen Torsionswinkel und Kopplungskonstante zu erwarten Die Werte um ca. 7.5 Hz bei einem Torsionswinkel von 140° in 2, 4 und 5, also quasifiquatorialer Phosphonatgruppe, stehen deutlich denen um ca. 1.0 Hz bei einem Torsionswinkel von ca. 100° (nach Röntgenstruktur in 1: 117°) und quasiaxialer Phosphonatgruppe in 1 und 3 gegenüber. In 6 findet man in Übereinstimmung damit wiederum einen mittleren Wert von 4.0 Hz, der dem Konformerengleichgewicht entspricht.

Über den Ansatz:

$$J_{exp} = {}^{\circ}H_{5} \times J({}^{\circ}H_{5}) + {}^{\circ}H_{0} \times J({}^{\circ}H_{0}) \text{ mit}$$

$$[^{\circ}H_{5}] + [^{\circ}H_{0}] = 1$$

lassen sich die Molenbrüche [${}^{\circ}H_{3}$] und [${}^{3}H_{0}$] bestimmen. Die Differenz der freien Enthalpie ist dann:

$$\Delta G_{\text{geo}} = -R \times T \times \ln \left(\frac{J_{\text{exp}} - J(^{2}H_{d})}{J(^{2}H_{d}) - J_{\text{exp}}} \right).$$

Zur Bestimmung der Konformerengleichgewichte im Falle der α -D- und β -D-glycero Phosphonate 5 und 6 für verschiedene Kopplungskonstanten kamen die in Tabelle 4 angegebenen Grenzwerte zur Anwendung.

Aus den gemittelten Konzentrationen [H₃] lassen sich die Gleichgewichtskonstanten K und damit die Differenz der freien Enthalpien ΔG_{gen} bei 308 K Probentemperatur ermitteln zu:

Tabelle 4. Konformationsanalyse von 5 und 6 mit J(C, X)-Kopplengsekonstanten (in Hz).

J	Grenzwerte der Stellung der PO(OMe) ₂ -Gruppe		;	5	6	
	Jquasiaxial	Jqua siäquatoriai	J	[₆ H ²]	Jexp	[ºH5]
C-1,1-H	148.0	142.0	143.5	0.25	147.0	0.17
C-1, P	157.5	171.3	169.0	0.17	162.9	0.39
C-3, P	0.0	7.9	5, 9	0.25	3.9	0.49
C-5, P	0.0	13.0	11.8	0.09	4.0	0. 31

Damit ergibt sich bei 5:

$$\Delta G_{mn} = -3.73 = A_{OAc} - A_{PO(OCHs)2}$$
 (kJ/mol)

und bei 6:

$$\Delta G_{\text{gas}} = -1.72 = A_{\text{OAc}} + A_{\text{POtOCH}_{3/2}} \quad \text{(kJ/mol)}$$

womit $A_{OAe} = -2.72 \text{ kJ/mol}$ und $A_{PO(OCH3)2} = 1.00 \text{ kJ/mol}$, behaftet mit einem Fehler von ca. $\pm 1.00 \text{ kJ/mol}$. Dies Ergebnis weicht von dem früher bestimmten A-Wert einer 4-Acetoxygruppe mit $-3.35 \text{ kJ/mol}^{13}$ wenig ab. Damit ist auch die quasiaxiale Stellung einer 4-Acetoxygruppe bei dieser Verbindungsklasse gegenüber der quasifiquatorialen Stellung erheblich begünstigt.

Kristallstrukturbestimmung von 1

Kristallisationsversuche aus einer Vielzahl von Lösungsmitteln und Lösungsmittelgemischen führten nicht zu brauchbaren Einkristallen, die jedoch durch fraktionierte Kristallisation aus dem sirupösen Gemisch von 1 und 2 erhalten werden konnten (Fp.: 79-81°C).

Aus Schwenk-, Weissenberg- und Präzessions-Aufnahmen wurden die vortäufigen Gitterkonstanten und die Raumgruppen ermittelt. Die Symmetrie und Auslöschungsregel der Reflexe in den Augnahmen wiesen eindeutig auf die Raumgruppe P₂₁₂₁₂₁ hin.

Die Verfeinerung der Gitterkonstanten erfolgte mit Hilfe des Rechenprogramms von J. Eck^M an Hand von mit einem Einkristalldiffraktometer (AED, Fa. Siemens) durch $\theta/2\theta$ -Abtastung (Cu_{Ku}-Strahlung) gewonnenen 21 θ -Maxima.

Es ergaben sich folgende Kristalldaten:

Raumgruppe = $P_{2_12_12_1}$; Z = 4

Die Intensitäten der Reflexe wurden an einem Kristall der Grösse 0.30 × 0.40 × 0.55 mm³ mit dem obengenannten Einkristalldiffraktometer unter Verwendung von Cu_{Kq}-Strahlung (Graphitmonochromator) gesammelt. Die Auswertung der Daten geschah mit Hilfe des von J. Eck³⁴ verfassten Rechenprogramms.

Ausser den üblichen Lorentz-Polarisationskorrekturen wurde eine Absorptionskorrektur durchgeführt. Die Anzahl der symmetrieunabhlingigen Strukturamplituden, die für die Verfeinerung der Parameter verwendet wurden, betrug 1707. Zur Feststellung der absoluten Konfiguration wurden 38 Friedel—Paare mit den zu erwartenden relativ stärksten Differenzen ausgesucht und zehnfach vermessen.

Die Phasenbestimmung der 350 stärksten E-Werte erfolgte mit der Direktmethode MULTAN.35 Alle schwereren Atome liessen sich durch die anschliessend Peaksuchprogramme berechneten E-maps und lokalisieren. Nach der Verfeinerung dieser Lagen mit Hilfe der kleinsten Quadrate³⁶ wurden die Wasser-Differenz-Fourier-Synthese37 stoffatombaen durch bestiment. Die weitere Verfeinerung mittels anisotroper Temperaturfaktoren für alle Atome ausser Wasserstoff konvergierte auf einem R-Wert von 0.04. Die verfeinerten Atomparameter sind in Tabelle 5 zusammengestellt.

Die F_c-Werte der nachgemessenen Reflexe von zwei zentrosymmetrischen Strukturen wurden mit den durch die anomale Dispersion verursachten komplexen Streufaktoren⁷⁷ berechnet. Sowohl die Differenzen der F_c- und F_c-Werte, als auch die R-Werte der beiden Strukturen (0.05 und 0.11)³⁰ wiesen eindeutig auf die in Abb.2 dargestellte Atomanordnung hin.

Diskussion der Kristallstruktur von 1

Der ORTEP-Zeichnung der Struktur von 1 (Abb.2) kann man deutlich entnehmen, dass die oben getroffene Anomerenzwordnung bestätigt wird. Entgegen der erwarteten Halbsesselkonformation überrascht die im Kristall vorliegende Konformation, die als Übergang einer Sofa(S₅)- in eine Halbsessel (°H₃)-Konformation bezeichnet werden kann. In dem deutlich abgeflachten Ring werden die Torsionswinkel ϕ_1 (05-C1-C2-C3) = 9.4° und ϕ_2 (C5-C4-C3-C2) = 17.5° beobachtet. Aus der durch die Atome C-1, C-2, C-3 und C-4 aufgespannten besten Ebene stehen die Atome O-5 mit 26 pm und C-5 mit 47 pm—nahezu doppelt so gross—heraus. Ein ebenfalls bemerkenswertes Strukturmerkmal ist die leichte Verdrillung der Atome C-1, C-2-C-3, C-4 um 2.7°.

Abweichungen von erwarteten Halbsesselkonformationen wurden kfirzlich auch bei Röntgenstrukturustersuchungen an Ethyl - 6 - 0 - benzoyl - 4 - iod - 2,3,4 - tridesoxy - α - D - threo - hex - 2 - enopy ranosid und Methyl - 2,3 - anhydro - 6 - brom - 6 - desoxy - 4 - 0 - (4,6 - di - 0 - acetyl - 2,3 - didesoxy - α - D - erythro - hex - 2 - enopyranosyl - α - D - allopyranosid beobachtet, jedoch treten dort noch weitgehendere Annäherungen an die Sofa-Konformationen auf.

Besondere Beachtung verdient bei der vroliegenden Struktur die Stellung der Dimethylphosphonogruppe in Himblick auf ihren kürzlich² ermittelten anomeren Effekt. Sie weist in 1 eine nahezu ideale staggered-Konformation bezogen auf die C-1, P-Bindung auf, wobei der Phosphorylsauerstoff zum 1-H trans steht (ϕ = 174.7°). Diese

Tabelle 5. Fraktionelle Atomkoordinaten und Temperaturfaktoren* von 1. (Die Parameter sind bis auf den Koeffizienten der isotropen Temperaturfaktoren von Wasserstoffatomen mit 10⁴ multipliziert. Die in Klammern angegebenen Standardabweichungen beziehen sich auf die letzte Stelle des zugehörigen Parameterwertes).

Atom	x	Υ	Z	u 11	UZZ	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P	4944(1)	6915(1)	324(2)	515(5)	504(5)	375(5)	62(5)	-23(5)	-96(5)
01	4837(1)	7535(Z)	-1915(6)	662(1 4)	665(18)	389(16)	153(16)	-117(15)	-102(16)
O2	5036(2)	5745(2)	-69(6)	1024(24)	482(16)	481(18)	-16(16)	56(22)	-122(18)
O3	4400(1)	6888(3)	2217(6)	478(15)	761(20)	528(19)	99(20)	47(16)	-66(16)
04	6494(1)	9630(2)	-1444(5)	547(15)	467(14)	368(15)	9(14)	-55(14)	-111(13)
O5	6156(1)	7080(Z)	790(5)	503(14)	498(15)	420(16)	122(14)	33(14)	0(13)
06	6659(1)	6549(2)	-3679(6)	559(16)	537(16)	555(19)	-117(17)	107(16)	-40(14)
07	7114(2)	10564(3)	943(-6)	769(21)	629(19)	514(19)	-7(18)	-214(18)	-162(18)
08	7529(2)	6509(3)	-5816(8)	653(20)	793(23)	924(30)	-125(25)	313(22)	8(18)
CI	5606(2)	7309(3)	2099(8)	500(22)	544(24)	363(21)	87(22)	-17(20)	-60(20)
CZ	5578(2)	8390(4)	2933(9)	536(25)	684(29)	339(22)	-69(23)	23(22)	-33(24)
C3	5974(2)	9088(4)	2223(9)	553(24)	587(25)	391(22)	-80(23)	4(22)	-54(22)
C4	6472(2)	8836(3)	400(8)	470(20)	457(20)	399(22)	25(21)	-19(20)	-45(17)
C5	6324(2)	7859(3)	-959(8)	453(20)	425(20)	401(22)	71(19)	-14(19)	-31(17)
C6	6870(Z)	7453(4)	-2366(10)	467(22)	519(24)	570(24)	-75(25)	73(23)	-62(20)
C7	5166(4)	5314(5)	-2422(14)	1625(77)	631(35)	667(37)	-148(34)	377(49)	-80(44)
C8	4012(3)	7747(5)	2626(14)	711(37)	822(41)	781(44)	-24(40)	75(37)	37(33)
C9	6822(2)	10474(3)	-917(8)	454(21)	459(21)	479(21)	-41(21)	29(20)	-25(19)
C10	6757(2)	11252(4)	-2888(11)	611(29)	550(27)	547(29)	104(27)	-47(26)	-67(23)
C11 C12	7047(2)	6148(3)	-5357(10)	627(26)	527(24)	546(27)	30(26)	83(25)	148(22)
HI	6777(3)	5189(4)	-6401(14)	982(43) 0.05(1)	520(29)	836(44)	-156(34)	105(40)	79(30)
H2	5642(17) 5271(19)	6793(30) 8576(35)	3426(86) 3497(91)	0.05(1)					
H3	5914(22)	9871(36)	2647(107)	0.07(1)					
пэ Н4	6923(17)	8831(28)	1032(76)	0.04(1)					
H5	5938(18)	7996(31)	-1905(84)	0.05(1)					
H61	7078(20)	8015(36)	-3260(97)	0.06(1)					
H62	7276(21)	7290(36)	-1242(99)	0.08(1)					
H71	5270(33)	4654(59)	-2345(150)	0.13(2)					
H72	4800(58)	4996(103)	-2610(242)	0.31(4)					
H73	5704(43)	5487(72)	-1071(183)	0.23(3)					
H81	3637(23)	7512(37)	2483(106)	0.08(2)					
H82	3963(37)	81 80(67)	1357(150)	0.15(3)					
H83	4217(27)	8361(52)	3026(133)	0.10(2)					
H1 01	6985(27)	11937(46)	-2452(121)	0.12(2)					
H102	6253(22)	11373(35)	-2847(98)	0.08(1)					
H103	6943(38)	11101(64)	-3962(153)	0.17(3)					
H1 21	7031(36)	4941(71)	-7490(165)	0.17(3)					
H1 22	6850(32)	46 37 (54)	-5311(133)	0.12(2)					
H123	6273(36)	5160(53)	-7865(156)	0.18(3)					

 $^{^{}m a)}$ Die anisotropen Temperaturkoeffisienten U $_{
m ij}$ sind auf den Ausdruck besogen :

$$T = \exp \left[-2\pi^2 \left(U_{11} h^2 a^{62} + U_{22} k^2 b^{62} + U_{33} l^2 c^{62} + 2U_{23} k l b^6 c^6 + 2U_{13} l h c^6 a^6 + 2U_{12} h k a^6 c^6 \right) \right]$$

Einstellung genügt sowohl einer möglichst grossen elektronischen Abstessung der freien Elektronenpaare der Dipolmomeate dürfte auch der Grund für die spiegel-O-Atome der Dimethylphosphono-Gruppe mit dem symmetrische Anordnung der Methoxyestergruppen rela-Ringsauerstoff, sowie einer weitgehend antiparallelen tiv zu der C-1, P, O-1-Ebene sein, obwohl in diesem Fall

Anordnung der Bindungsdipole. Die Kompensation der

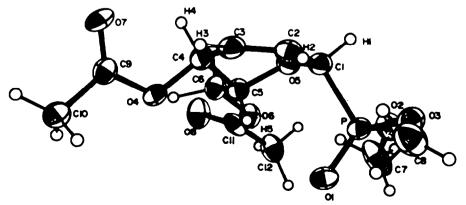


Abb. 2. ORTEP-Zeich EP-Zeichnung¹⁰ von 1. Die Ellipsoide der schweren Atome begrenzen den Bereich der Anfenthalts-wahrscheinlichkeit von 39%, der Masstab der Wasserstoffatome ist willkürlich gewählt.

Tabelle 6. Bindungslängen, -winkel und ausgewählte Tornionswinkel in 1 (pm bzw. Grad: Standardabweichungen bezogen auf die letzte Stelle in Klazamern).

		Dezogen ant one setzi		MOTAL).	
		Bindungelär	ngen		
C-1, C-2	148.5(6)	C-6, H-61	99. 2(48)	C-8, H-83	94.4(63)
C-1, H-1	99.0(44)	C-6, H-62	109. 9(48)	O-4, C- 9	134.7(5)
C-1, O-5	142.8(5)	C-6, O- 6	145.5(5)	C-9, C-10	148. 3(6)
C-1, P	181.4(4)	P ,O- 1	148.0(3)	C-9, O- 7	120.1(5)
C-2, C-3	131.5(4)	P , O- 2	155.8(3)	C-10, H-101	105. 2(61)
C-2, H-2	77.6(42)	P , O- 3	157.2(3)	C-10, H-102	111.3(48)
C-3, C-4	150.8(6)	O-2, C- 7	142.5(7)	C-10, H-103	73. 9(83)
C-3, H-3	105.7(46)	C-7, H-71	89.4(71)	O-6, C-11	135.1(5)
C-4, C-5	151.0(5)	C-7, H-72	90.8(123)	C-11, C-12	149.7(7)
C-4, H-4	104.4(36)	C-7, H-73	140.3(98)	C-11, O-8	118.1(5)
C-4, O-4	144.3(5)	O-3, C- B	142.4(7)	C-12, H-121	87.4(85)
C - 5, C - 6	151.3(6)	C-8, H-81	87.9(47)	C-12, H-122	94.7(70)
C-5, H-5	100, 2(41)	C-8, H-82	89.7(83)	C-12, H-123	135.9(84)
C-5, O-5	144.1(4)		•		
		Bindungewi	nkel		
O-2, P, O-1	116.4(2)	C-3, C-4, O-4	108.8(3)	H-73, C-7, H-72	150.6(92)
O-3, P, O-1	115.6(2)	C-5, C-4, O-4	106.0(3)	H-81, C-8, O-3	105.4(33)
0-3, P, O-2	99.6(2)	C-5, C-4, C-3	110.5(3)	H-82, C-8, O-3	116.6(54)
C-1, P, O-1	114.0(2)	H-4, C-4, O-4	101.6(22)	H-82, C-8, H-81	92, 3(59)
C-1, P, O-2	104.3(2)	H-4, C-4, C-3	117. 9(23)	H-83, C-8, O-3	115.1(38)
C-1, P, O-3	105, 2(2)	H-4, C-4, C-5	111.0(21)	H-83, C-8, H-81	1 39. 5(51)
C-7, O-2, P	122, 5(4)	C-4, C-5, O-5	109. 2(3)	H-83, C-8, H-82	72. 5(59)
C-8, O-3, P	122.3(4)	C-6, C-5, O-5	109.6(3)	0-7, C-9, O-4	122.8(4)
C-9, O-4, C-4	117.4(3)	C-6, C-5, C-4	112.0(3)	C-10, C-9, O-4	110.9(4)
C-5, O-5, C-1	113.2(3)	H-5, C-5, O-5	104.6(24)	C-10, C-9, O-7	126.3(4)
C-11, O-6, C-6	116.5(3)	H-5, C-5, C-4	106.2(24)	H-101, C-10, C-9	112.0(35)
O-5, C-1, P	110.4(3)	H-5, C-5, C-6	117. 8(25)	H-102, C-10, C-9	100. 3(27)
C-2, C-1, P	113.5(3)	C-5, C-6, O-6	106.4(3)	H-102, C-10, H-101	110.2(39)
C-2, C-1, O-5	112.7(4)	H-61, C-6, O-6	120.5(29)	H-103, C-10, C-9	109.4(66)
H-1,C-1,P	104. 9(23)	H-61, C-6, C-5	110.4(27)	H-103, C-10, H-101	98. 3(70)
H-1, C-1, O-5	98.7(23)	H-62, C-6, O-6	111.8(28)	H-103, C-10, H-102	126. 8(70)
H-1, C-1, C-2	115,4(24)	H-62, C-6, C-5	115. 2(27)	O-8, C-11, O-6	123.3(5)
C-3, C-2, H-2	117.8(36)	H-62, C-6, H-61	92.5(33)	C-12, C-11, O-6	109.4(4)
C-3, C-2, C-1	122.9(4)	H-71, C-7, O-2	113.0(54)	C-12, C-11, O-8	127.3(5)
C-1, C-2, H-2	117.0(35)	H-72, C-7, O-2	96.1(85)	H-121, C-12, C-11	108.5(57)
C-4, C-3, C-2	121.1(4)	H-72, C-7, H-71	77.7(76)	H-122, C-12, C-11	109.6(43)
H-3, C-3, C-2	121.8(28)	H-73, C-7, O-2	68.5(38)	H-122, C-12, H-121	91.9(57)
H-3, C-3, C-4	116.3(29)	H-73, C-7, H-71	85.3(58)	H-123, C-12, C-11	124.3(30)
				H-123, C-12, H-121	96. 2(60)
				H-123, C-12, H-122	7 7
		Torsions	winkel		
	C-5, C-4, C-	3. C - 2 17. 5	H-1.C	-1, C-2, H-2	-75.6
	O-5, C-1, C-			-2, C-3, H-3	9.5
	C-1, C-2, C-			-3, C-4, H-4	78.6
	P , C-1, C-	•		-4, C-5, H-5	-164.2
	P , C-1,0			-5, C-6, O-6	63.4
	P ,C-1,C-		0-1, P		15.3
		1,0-5 -69.2	O-1, P		-34.7
			- • •		
	O-2, P , C-	1,0-5 58.8	O-1, P	,C-1,H-1	-174.7

die freien Orbitale der Sauerstoffatome O-2 und O-3 in energetisch ungfinstigen Positionen, etwa wie bei einer 1.3-diaxialen Wechselwirkung, stehen.

Die weiteren Bindungslängen und Winkel weisen keine signifikanten Abweichungen auf. Die Verkürzung der C-1, C-2- gegenüber der C-3, C-4- Bindung um 2.3 pm und der C-1, O-5- gegenüber der C-5, O-5-Bindung um 1.3 pm liegen beide nur geringfügig ausserhalb der Summe der Standardabweichungen der jeweiligen Abstände (Tabelle 6).

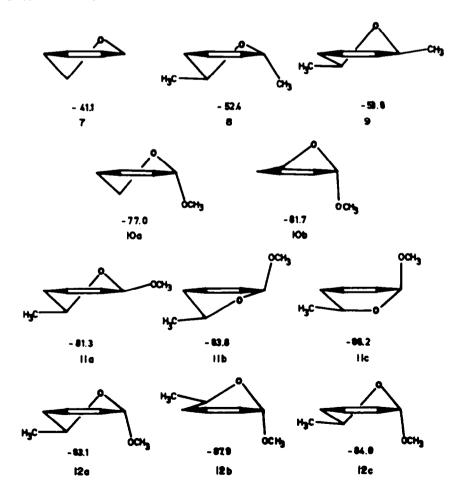
Modeliberechnungen an 5,6-Dihydro-2H-pyran-derivaten An geeigneten Modellen wurde versucht mit Hilfe der Geometrieoptimierung des Programms MINDO-3⁴² die experimentell in mehreren Fällen aufgefundene Abflachung einer Halbeessel in Richtung auf eine Sofa-Konformation zu überpräfen. Zunächt wurde das unsubstituierte 5,6-Dihydro-2H-pyran (7) unter Preigabe aller geometrischer Parameter (Bindungslängen, -winkel und Torsionswinkel) optimierend berechnet. Sowohl ausgehend von einer idealen Sofa- als auch einer idealen Halbeesselkonformation wurden für 7 nahezu identische optimierte Strukturen erhalten, bei denen jeweils signifikant der Torsionswinkel $\phi_1(C-4, C-3, C-2, O-1) = 5.1°$ bzw. 9.9° geringer als $\phi_2(C-3, C-4, C-5, C-6) = 8.5°$ bzw. 10.7° ausfällt, wie in 7 dargestellt. Bemerkenswert ist, dass das HOMO im Wesentlichen aus der Überlappung der p_x-Orbitale von O-1, C-2, C-3, C-4 und C-5

gebildet wird. Unter Vernachlässigung der c₁ ≤ 0.04 ernibt sich:

$$\phi_{HOMO} = 0.21 p_{xO-1} + 0.19 p_{xC-2} - 0.57 p_{xC-3} - 0.57 p_{xC-4} + 0.14 p_{xC-5} + 0.27 s_{2o-H} - 0.31 s_{2o-H} - 0.16 s_{2o-H} + 0.21 s_{2o-H}$$

Als Modell für die α -D-Derivate 1, 3 und 5 wurde das 2,6(R,R)-Dimethyl-5,6-dihydro-2H-pyran (8) betrachtet. Hierbei finden sich die Torsionswinkel ϕ_1 (O-1, C-2, C-3, C-4) = 5.6° und ϕ_2 (C-3, C-4, C-5-C-6) = 11.5°, die recht gut mit den entsprechenden Torsionswinkeln aus der Röntgenstrukturanalyse von 1 (ϕ_1 = 9.4° und ϕ_2 = 17.5°) übereinstimmen. Allerdings ergeben sich C-O-Bindungsabstände bei den nach MINDO-3 optimierten Strukturen, die um 7 pm gegenüber 1 verkürzt ausfallen. Das HOMO bei 8 setzt sich mit fast identischen Koeffizienten wie bei 7 zusammen, wobei sich cj(p_2 C-2) = -0.28 ergibt, und anstatt eines H-Atoms an C-2 ist das C-Atom der Methylgruppe mit seinen p_2 - und p_2 -Orbitalen beteiligt.

Entsprechend wurde als Modell für die β -D-Derivate 2, 4 und 6 2(S), 6(R)-Dimethyl-5,6-dihydro-2H-pyran (9) berechnet. Dabei ergeben sich die Torsionswinkel $\phi_1 = 12.9^\circ$ und $\phi_2 = 8.7^\circ$, wonach in diesem Fall der Halbsessehring stärker an C-6 abgeflacht ist. Während Rochnungen nach MINDO-3 mit der Dimethylphosphonogruppe nicht vorgenommen werden können,


lassen diese Ergebnisse mit der hinsichtlich des sterischen Anspruchs vergleichbaren Methylgruppe² einen Anhalt für die Verdrillung des Ringes auch im Falle der β -Verbindungen deutlich werden.

Versuche zur Berechung glycosidartiger Modellverbindungen, wie 2(R)-Methoxy-5,6-dihydro-2H-pyran
(10), 2(S)-Methoxy-6(R)-methyl-5,6-dihydro-2H-pyran
(11) und 2(R)-Methoxy-6(R)-methyl-5,6-dihydro-2H-pyran
(12) führten zu Strukturen mit Parametern am anomeren
Zentrum, die von der Realität erheblich abweichen.
Zumächst wurden die C-O-Bindungsklingen auf 137 pm
und der Bindungswinkel am exocyclischen Sauerstoff auf
130" durch das Programm optimiert, wobei die nicht
beobachteten Strukturen 166, 11e und 126 erhalten
wurden.

Bei einer Fixierung dieser Parameter auf relevante Daten ergaben sich andere Strukturen (16a, 11a, 11b, 12a und 12e), deren Bildungsenthalpien (ΔH₂) jedoch erheblich über denen von 16a, 11e und 12b lagen. Die bisher tatsächlich beobachteten Strukturen ^{60,41} ergaben sich nicht. Solche Abweichungen bei Anwendung des MINDO-3 Programms sind allerdings bei Vorliegen 1,3-ständiger elektronegativer Atome bekannt. ⁴³

EXPERIMENTALLER TEXT

Darstellung der Verbindungen: Die Synthese und Trennung der ungesättigten anomeren Glycosylphosphonate 1-6 erfolgte nach früher beschriebenen Methoden.³

Zahlen unter den Formelbildern : A H,-Werte in (kcal/mol).

¹H-NMR-Spatzmat: Puls-PT-Measuragen erfolgton mit dem Spaktrometer WH 270 (32K Datemspeicher) der Pa. Bruker-Physik AG bei 270 MHz in CDCl₃ und C₆D₆ mit TMS als internom Standard.

¹³C-NMR-Spektren: Puls-FT-Messangen erfolgten mit den Spektrometern WP 60 (EK Datemspeicher) bzw. WH 270 der Fa. Bruker-Physik AG bei 15.09 MHz bzw. 67.88 MHz in CDCl₃ (7-15%ige Lösungen) mit TMS als internem Standard.

LCN-38-Programm: Diese Version des LAOCN-3 Programms 10 beinhaltet eine verlinderte Eingabe der Daten sowie eine variierbare Ausgabe der Ergebnisse. Nach der Iteration werden die Gesamtzahl der Referenzlinien (N), die mittlere quadratische Abweichung (root mean square, RMS) und eine Kinssifizierung nach der Anzahl der Abweichungen der experimentellen von den berechneten Frequenzen (A»), die kleiner sind als 0.1 Hz (R), bzw. 0.05 Hz (R') ausgegeben.

Die Analyse der Spektren erfolgte zumlichst mit 6 Spins von 1-H bis 5-H sowie Phosphor bei den Verbindungen 1-4 unter Austassung der Signale 6e-H und 6b-H. Dabei wurden zu Beginn im "Trial and Error"-Verfahren Spektren mit angenommonen Kopplungskonstanten und aus den Spektren abgeschitztsechemischen Verschiebungen berechnet, bis iterierbare Daten erhalten wurden. Die konnten dann als Startparameter für des 8-Spinprogramm Verwendung finden.

Die LCN-38 Programme wurden auf einem IBM 370/168 Computer bei DESY (Deutsches Elektronen Synchrotron, Hamburg) gerechnet. Die graphische Darstellung bedient sich des Plotprogramms IPSA.⁴⁴

MINDO-3 Berechnungen wurden auf dem IBM 370/168 Computer bei DESY, Hamburg vorgenommen.

Danksagung—Wir danken dem Deutschen Elektronen Synchrotron Hamburg (DESY) für die zur Verfügung gestellte Rechenzeit.

LITERATUR

- ¹Phoephorhaltige Kohlenhydrate, XVIII.Mitteilung.²
- ²XVII.Mitteihang: J. Thiom, B. Meyer und H. Panisen, Chem. Ber. 111, 3325 (1978).
- ³H. Paulsen und J. Thiem, *Ibid.* 106, 3850 (1973).
- ⁴J. Thiem, M. Günther und H. Paulsen, Ibid. 168, 2279 (1975).
- ⁵J. Thiom and H. Paulson, Phosphorus 6, 51 (1975).
- ⁴C. S. Hudson, J. Am. Chem. Soc. 31, 66 (1909).
- T. R. Emerson und T. L. V. Ulbricht, Chem. & Ind. 2129 (1964);
- R. U. Lessieux und J. W. Lonen, Can. J. Chem. 41, 889 (1963).

 R. J. Ferrier, W. G. Overend und G. H. Sankey, J. Chem. Soc.
- TR. J. Ferrier, W. G. Overead and G. H. Sankey, J. Casm. Soc 2830 (1965).
- Thiom, Vortrag, III. Doutsch-Dänisches Symposium für Organische Chemie, Koponhagen (29.-31.8.1975).
- ¹⁶S. Castellano und A. A. Bothmer-By, J. Chem. Phys. 41, 3863 (1964).
- ¹¹M. Rico and J. Santoro, Org. Magn. Reson. 8, 49 (1976); L. Szilásyi and Z. Györgydolk, Carbohydr. Res. 48, 159 (1976).

- ¹³D. F. Ewing, Org. Magn. Reson. 7, 520 (1975).
- ¹³S. L. Mannit, G. L. Juvinell and D. D. Elleman, J. Am. Chem. Soc. 85, 2664 (1963); G. M. Whitesides, J. L. Beauchamp and J. D. Roberts, *Ibid.* 85, 2665 (1963).
- 16H. J. Callot und C. Benezra, Can. J. Chem. 48, 3382 (1970).
- ¹³C. Benezra, J. Am. Chem. Soc. 95, 6890 (1973).
- ¹⁴Y. Y. Samitov, R. K. Saphyllin, R. M. Aminova, N. D. Churylkin und G. M. Zhidomirov, *Phosphorus* 5, 151 (1975).
- ¹⁷E. W. Garbisch, J. Am. Chem. Soc. 26, 5561 (1964).
- 19M. Barfield, Ibid. 93, 1066 (1971).
- ¹⁶B. Meyer, Diplomarbeit, Universität Hamburg (1977).
- M. Barfield und S. Sternhell, J. Am. Chem. Soc. 94, 1905 (1972).
 D. K. Dalling und D. M. Grant, Did. 89, 6612 (1967); 94, 3318
- (1972).

 22. G. S. Ritchie, N. Cyr und A. S. Perlin, Can. J. Chem. 54
- 2301 (1976).

 DH. Paulsen, V. Sinawell and W. Greve, Carbohydr. Res. 49, 27 (1976).
- ²⁴J. Feeney, D. Shew und P. J. S. Pauwein, J. Chem. Soc. Chem. Commun. 554 (1970).
- ²⁵C. Juan and H. S. Gutowsky, J. Chem. Phys. 37, 2198 (1962).
- M. Bock and C. Pedersen, Acta Chem. Scand. B29, 258 (1975) and vorbergehende Veröffentlichungen.
- ²⁷J. Thiom und B. Meyer, Tetrahedron Letters 3573 (1977).
- ²⁶K. Bock und C. Pederson, Acta Chem. Scand. B29, 682 (1975).
- ²⁸S. I. Fonthorman und L. D. Quin, Tetrahedron Letters 1955 (1973).
- ³⁶W. J. Stec, K. Lesiak, D. Mislezarek und B. Stec, Z. Naturforsch. 38s, 710 (1975); W. J. Stec, R. Kinas und A. Okruszek, B4d. 31s, 393 (1976).
- G. W. Buchenan und C. Benezra, Con. J. Chem. \$4, 231 (1976).
 Thiem und B. Meyer, Org. Magn. Reson. 11, 50 (1978).
- ¹⁰R. J. Ferrier and G. H. Sankey, J. Chem. Soc. C 2345 (1966).
- ¹⁴J. Eck, unveröffentlichte Programme, Hamburg 1970.
- ²⁵G. Germain, P. Main und M. M. Woolfson, Acta Crystallogr. A27, 368 (1971).
- ³⁶G. Sheldrick, Programs for Crystal structure determination, Cambridge (1976).
- ¹⁷R. Srinivasan, Application of X-Ray Anomalous Scattering in Structural Studies; Advances in Structure Research by Diffraction Methods, p. 105. Pergamon Press, Oxford (1972).
- ³⁶D. W. Eagel, Acta Crystallogr. B28, 1496 (1972).
- ³⁶C. K. Johnson, ORTEP: ORNL-3794, revises, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (1966).
- ⁴⁸R. Stockhwyzen und C. Chich, J. Chem. Soc. Perkin Trans. II 481 (1976).
- ⁴¹J. Thiem, J. Schwentner, E. Schättpelz und J. Kopf, Chem. Ber. im Druck.
- ⁴⁸R. C. Bingham, M. S. Dewar und D. H. Lo, J. Am. Chem. Soc. 97, 1283 (1975).
- ⁴³R. C. Bingham, M. S. Dewar und D. H. Lo, *Ibid.* 97, 1302 (1975).
- **Programm IPSA, V. Blobel, Interner Bericht, DESY, Hamburg (1975).